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h i g h l i g h t s

• Prisoner’s Dilemma (PD) and Snowdrift (SD) are games used to study cooperation.
• Spatial interactions affect cooperation frequency in PD and SD.
• Certain cost–benefit ratios potentially lead to static spatial patterns (standoffs).
• Standoffs can only occur where aperiodic static patterns are possible.
• Standoffs can emerge spontaneously from non-standoff conditions.
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a b s t r a c t

The Prisoner’s Dilemma and Snowdrift games are the main theoretical constructs used to
study the evolutionary dynamics of cooperation. In large, well-mixed populations, mean-
field models predict a stable equilibrium abundance of all defectors in the Prisoner’s
Dilemma and a stable mixed-equilibrium of cooperators and defectors in the Snowdrift
game. In the spatial extensions of these games, which can greatly modify the fates of
populations (including allowing cooperators to persist in the Prisoner’s Dilemma, for
example), lattice models are typically used to represent space, individuals play only
with their nearest neighbours, and strategy replacement is a function of the differences
in payoffs between neighbours. Interestingly, certain values of the cost–benefit ratio of
cooperation, coupled with particular spatial configurations of cooperators and defectors,
can lead to ‘global standoffs’, a situation in which all cooperator–defector neighbours
have identical payoffs, leading to the development of static spatial patterns. We start by
investigating the conditions that can lead to ‘local standoffs’ (i.e., in which isolated pairs
of neighbouring cooperators and defectors cannot overtake one another), and then use
exhaustive searches of small square lattices (4 × 4 and 6 × 6) of degree k = 3, k = 4, and
k = 6, to show that two main types of global standoff patterns – ‘periodic’ and ‘aperiodic’
– are possible by tiling local standoffs across entire spatially structured populations. Of
these two types, we argue that only aperiodic global standoffs are likely to be potentially
attracting, i.e., capable of emerging spontaneously from non-standoff conditions. Finally,
we use stochastic simulationmodels with comparatively large lattices (100×100) to show
that global standoffs in the Prisoner’s Dilemma and Snowdrift games do indeed only (but
not always) emerge under the conditions predicted by the small-lattice analysis.
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1. Introduction

Cooperation occurs when individuals provide a benefit to each other at a cost to themselves [1]. Cooperation among
non-kin is a long-standing issue in evolutionary biology, because cooperators are vulnerable to invasion by defectors, those
that accept the benefits of cooperation from others yet fail to provide benefits to others (and, in doing so, avoid the costs).
Nevertheless, cooperation is both common and important in natural systems—most spectacularly in the eusocial insects and
in human societies [2].

Evolutionary game theory is the main theoretical framework used to explore the evolution of cooperation [3–9].
Typically, individual cooperators and defectors interact amongst themselves and receive ‘payoffs’ from these interactions
that influence their fitness. Payoffs depend on who interacts with whom. In the Prisoner’s Dilemma, the prototypical game
in cooperation studies, defection against a cooperator yields the highest payoff, followed by mutual cooperation, mutual
defection, and cooperation with a defector. Regardless of what one’s co-player does, it is always better to defect rather than
cooperate; defection is an evolutionarily stable strategy that dominates cooperation, even though a group of cooperators
has a higher mean fitness than a group of defectors [3]. Thus, the Prisoner’s Dilemma is an abstraction of cooperation that
evokes the inherent conflict between the interests of individuals and the interests of the populations to which they belong.

Another gamewith relevance to the evolutionary dynamics of cooperation is the Snowdrift game (sometimes referred to
as ‘hawk–dove’ or ‘chicken’ [3,10–12]). Like the Prisoner’s Dilemma, in the Snowdrift game, defection against a cooperator
andmutual cooperation represent the first- and second-highest payoffs, respectively. However, in contrast to the Prisoner’s
Dilemma, cooperation against a defector is the third-highest payoff,withmutual defectionbeing theworst possible outcome.
This reflects the fact that in some potentially cooperative interactions, the benefit provided by a cooperator accrues not only
to its co-player, but also to itself (e.g., the production of enzymes for extracellular digestion [13]). If the co-player fails to
cooperate, the cooperator is stuck with paying the entire cost to receive a benefit, but so long as the value of the benefit of
cooperating exceeds its cost, it is still a better outcome than mutual defection [8].

Interestingly, and counter to the Prisoner’s Dilemma, in the Snowdrift game, the best strategy against a cooperator is de-
fection and the best strategy against a defector is cooperation. Thus, in large, well-mixed populations playing the Snowdrift
game, there is a stable equilibrium composed of a mixture of cooperators and defectors, with their frequencies determined
by the relative costs and benefits of cooperation [4,5,11]. (In the Prisoner’s Dilemma, the stable equilibrium in large, well-
mixed populations is the fixation of defectors at the expense of cooperators [5].)

Several mechanisms have been proposed to explain the existence of cooperation in the Prisoner’s Dilemma; to a lesser
extent, the effects of these mechanisms on the prospects of cooperators and defectors in the Snowdrift game have also been
examined. Thesemechanisms, which rely on assortative interactions among cooperators, include kin selection [14], iterated
interactions [15], reputational effects [16], recognition effects (a.k.a. ‘green-beard’ effects [17–22]), group selection [23],
and network selection [11,24–28] (see recent reviews by Nowak [1,5] and Sherratt and Wilkinson [2]). The last of these,
network selection, is generalised by evolutionary graph theory [6,29], in which individuals interact with only a small subset
of the entire population. In turn, this occurs due to limited social contacts or localised spatial interactions. Certain effects of
localised spatial interactions (i.e., ‘spatial selection’) are the focus of the current study.

Spatially local interactions are most typically studied using lattice models [30]. Individual cooperators and defectors are
arrayed as lattice cells with k = 3, 4, or 6 nearest neighbours, corresponding to the three types of regular tessellations on a
plane in the context of two-dimensional geometry (i.e., those composed of tiled equilateral triangles, squares, and regular
hexagons, respectively), and corresponding to regular graphs with nodes of varying degree in the context of evolutionary
graph theory. Although the geometric and graph-theoretical interpretations are equivalent, herewe focus on the geometrical
interpretation for consistencywithmost previous examinations of the effects of space on the evolution of cooperation. Thus,
individuals situated at a given focal cell interact with all the other individuals whose cells share a border with this focal cell;
in addition, these bordering cells compose the focal cell’s local neighbourhood. Furthermore, the rate of strategy replacement
is proportional to the difference in payoffs between individuals situated at bordering cells.

As an aside, note that k = 8 lattices are also sometimes considered in studies using lattice models. In this case, space is
represented by a tiled-square lattice in which cells that share a common corner are considered neighbours, in addition to
cells that share a common border (i.e., the ‘Moore neighbourhood’ [30]). However, these are not considered here for twomain
reasons: First, common-corner neighbours in tiled-square lattices have a centre-to-centre distance that is greater than that
of common-border neighbours by a factor of

√
2; in two dimensions, it is not possible for allmembers of an entire population

to have exactly k = 8 equally close nearest neighbours (geometrically, this is equivalent to the fact that it is not possible to
create a regular tessellation using octagons). Second, common-corner neighbours have two neighbours in common,whereas
common-border neighbours have four neighbours in common. The presence of two fundamentally different types of spatial
interactions greatly complicates the analyses, and also seems rather arbitrary, given that such types are not commonly
considered for the other lattice types. For these two reasons, we omitted the k = 8 case and stuck with k = 3, 4, or 6.

Spatially local interactions have contrasting effects in latticemodels of the Prisoner’s Dilemma and Snowdrift games [26].
In the Prisoner’s Dilemma, local interactions allow cooperators to persist – at leastwhen the cost–benefit ratio of cooperation
is relatively low – because, by forming clusters, cooperators interact with other cooperators more than would be expected
based on their relative abundance in the population alone (thereby skewing the effective payoffs associated with the
different interaction outcomes [31]). In the Snowdrift game, local interactions can cause the frequency of cooperators to be
greater or less than that of the mean-field predictions (with the latter outcome occurring over a wider range of cost–benefit
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Fig. 1. Examples of the neighbourhoods surrounding the dyad C2D1 (middle two cells in each panel) in lattices where each cell has k = 3 neighbours,
k = 4 neighbours, or k = 6 neighbours. Black cells are cooperators and white cells are defectors.

ratios [11,26]), although the mechanism appears to be based on limited neighbourhoods rather than spatial correlations
per se [32].

Interestingly, there are some combinations of cost–benefit ratio and lattice configuration that produce ‘global standoffs’
(also known as ‘static patterns’ or ‘draws’ [33–35]). Global standoffs are defined as a situation where every individual in a
spatially explicit population has the same payoff, or when any differences in payoffs can only lead to an unchanged spatial
configuration of cooperators and defectors (i.e., because any differences in payoffs are present only between inhabitants of
neighbouring cells that share the same strategy). Further, they represent the spatial situations that occur at the transition
points between various dynamical ‘phases’ [34]. From a biological perspective, global standoffs are interesting in their own
right because they can allow for the persistence of cooperators at cost–benefit ratios greater than the usual cooperator-
extinction threshold. Here, we analyze the spatial configurations and model parameter values that lead to such global
standoffs. We start by discussing the Prisoner’s Dilemma and Snowdrift games in more formal terms. We then define local
strategy configurations between pairs of interacting nodes in lattices of different degree. Next, we identify payoffs that
lead to local standoffs within pairs of interacting cooperators and defectors. We then investigate the ways that such local
standoffs can be ‘tiled’ over entire lattices to allow for global standoffs. Finally, we conduct stochastic simulation models
that recapitulate many of the predicted spatial patterns for the particular standoff payoffs that we identified.

2. Prisoner’s Dilemma and Snowdrift games

Generically, when two cooperators interact, they each receive the reward payoff, R. When two defectors interact, they
each receive the punishment payoff, P . When a cooperator interacts with a defector, the defector receives the temptation
payoff, T , while the cooperator receives the sucker’s payoff, S [8].

In the Prisoner’s Dilemma, cooperators pay a cost, c , in order to provide a benefit, b, to their co-player (b > c > 0).
Defectors pay no costs and provide no benefits. Thus, for this payoff scenario, R = b − c, P = 0, T = b, and S = −c.
By defining the cost–benefit ratio, u = c/b (a number between 0 and 1), and by noting that relative rather than absolute
payoffs are important in evolutionary dynamics, we can rescale the four payoffs as R = 1, P = u, T = 1 + u, and S = 0;
this rescaling simplifies matters by defining the game in terms of a single parameter [36].

In the Snowdrift game, a benefit, b, accrues to both players, as long as at least one of them cooperates. If at least one
player cooperates, a total cost c is paid (either by the sole cooperator if only one player cooperates, or shared equally by
both cooperators if both players cooperate). As with the Prisoner’s Dilemma, b > c > 0. Thus, for this payoff scenario,
R = b − c/2, P = 0, T = b and S = b − c. By defining the cost–benefit ratio of mutual cooperation, v = c/(2b − c) (a
number between 0 and 1), and by once again noting that relative rather than absolute payoffs are important in evolutionary
dynamics, we can redefine the four payoffs as R = 1, P = 0, T = 1 + v, and S = 1 − v [36].

3. Local spatial configurations of cooperator–defector ‘dyads’

In two-player games such as the Prisoner’s Dilemma and the Snowdrift game, interactions occur between pairs of players.
Therefore, spatial configurations at the level of the pair are of paramount importance in the analysis of standoffs. A ‘dyad’,XiYj
is defined as a pair of players playing strategies X and Y (X, Y ∈ {C,D}, where C and D represent cooperation and defection,
respectively) that interact with one another, and which have, respectively, i and j cooperators among their k neighbours.
For example, C2D1 is a dyad where a cooperator with two (other) cooperators in its neighbourhood interacts with a defector
with one cooperator in its neighbourhood (Fig. 1).

Note that somedyads are not possible. For example, in CiDj dyads (i.e., thosewhere a cooperator interactswith a defector),
the focal cooperator can have at most k−1 other cooperators in its k-member neighbourhood (0 ≤ i ≤ k−1). Similarly, the
focal defector must have at least 1 cooperator in its k-member neighbourhood (1 ≤ j ≤ k). Furthermore, in k = 6 lattices
in particular, other dyads are not possible due to the fact that both members of the dyad have neighbours in common, a
situation that does not exist in k = 3 and k = 4 lattices. For example, C1D5 is possible, but C0D5, C0D6, and C1D6 are not
possible (Fig. 2).

Of all the possible dyads, those of the CiDj variety are of particular interestwhen addressing the phenomenon of standoffs,
because they can lead to new spatial configurations (e.g., CiDj → Ci+1Cj or CiDj → DiDj−1). By contrast, dyads of the CiCj
and DiDj variety may lead to cell replacements, but these do not change the overall spatial configuration of cooperators
and defectors in the lattice. Thus, it is only necessary to determine the conditions that lead to possible standoffs between
cooperators and defectors.
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Fig. 2. In k = 6 lattices, the dyad C1D5 (shown) is possible (black cells are cooperators and white cells are defectors); however, C0D5 (not shown) is not
possible. In order for a defector to have five cooperators in its neighbourhood, each neighbouring cooperator must have at least one cooperator in its
neighbourhood. Likewise, C0D6, C1D6, C4D1, C5D1 , and C5D2 are also not possible.

(a) k = 3 lattices.

(b) k = 4 lattices.

(c) k = 6 lattices.

Fig. 3. Values of the cost–benefit ratio, u = c/b, for which cooperators with i (other) cooperators in their k-member neighbourhood (Ci , rows) have the
same payoff as defectors with j cooperators in their k-member neighbourhood (Dj , columns) for the spatial Prisoner’s Dilemma, played on (a) k = 3 lattices,
(b) k = 4 lattices, and (c) k = 6 lattices. Dark-grey shaded areas denote unacceptable values of u (because 0 < u < 1). Cells with bolded values represent
possible spatial configurations (the others are impossible). The value of each cell is computed as (i − j)/k.

4. Identifying payoffs that lead to local standoffs in CiDj dyads

A ‘local standoff’ between a cooperatorwith i (other) cooperators among its kneighbours and adefectorwith j cooperators
among its k neighbours occurs when the focal cooperator and defector have equal total payoffs, i.e., when Ri + S(k − i) =

Tj + P(k − j). In the Prisoner’s Dilemma, this occurs when

u = (i − j)/k. (1)

In the Snowdrift game, this occurs when

v = (j − k)/(i − j − k). (2)

There are several constraints to these values of u and v for them to potentially allow for spatial standoffs:
First, all of i, j, and kmust be integers. This confines the critical u and v values in Eqs. (1) and (2) to a small set of rational

numbers.
Second, as discussed in the previous section, lattice geometry precludes certain combinations of i and j in CiDj dyads. This

further shrinks the set of critical values of u and v.
Third, in order to be a proper Prisoner’s Dilemma game, u must be between 0 and 1; similarly, in order to be a proper

Snowdrift game, v must also be between 0 and 1 [36]. Given Eqs. (1) and (2), and these first three constraints, it is straightfor-
ward to identify u values and v values for which local cooperator–defector standoffs are possible in the Prisoner’s Dilemma
(Fig. 3) and the Snowdrift game (Fig. 4), respectively.

A value of u (or v) for which the members of particular CiDj dyads experience a local standoff is necessary, but not
sufficient, for standoff conditions to prevail across an entire lattice (i.e., a ‘global standoff’). For this to occur, it must be
possible for all CiDj dyads in a lattice to simultaneously experience local standoffs.
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(a) k = 3 lattices.

(b) k = 4 lattices.

(c) k = 6 lattices.

Fig. 4. Values of the cost–benefit ratio of mutual cooperation, v = c/(b − c), for which cooperators with i (other) cooperators in their k-member
neighbourhood (Ci , rows) have the same payoff as defectors with j cooperators in their k-member neighbourhood (Dj , columns) for the spatial Snowdrift
game, played on (a) k = 3 lattices, (b) k = 4 lattices, and (c) k = 6 lattices. Dark-grey shaded areas denote unacceptable values of v (because 0 < v < 1).
Cells with bolded values represent possible spatial configurations (the others are impossible). The value of each cell is computed as (j − k)/(i − j − k).
Note that the payoff for Ck is always greater than the payoff for D0 (i.e., their payoffs, as functions of v, are parallel when i − j − k = 0); at any rate, such
configurations are impossible in lattice models.

5. Finding global standoffs in the spatial Prisoner’s Dilemma and Snowdrift games

One way to determine the existence and nature of lattice configurations that lead to global standoffs is to consider every
possible configuration of lattices of a given size. For square lattices with N = L × L individuals, the number of possible
configurations is 2N (granted, many of these are isomorphic). For this reason, the largest lattices that we could reasonably
examine exhaustively were 4 × 4 lattices, for a total of 216

= 65,536 configurations. (By comparison, 5 × 5 lattices have
225

≈ 3.36 × 107 configurations and 6 × 6 lattices have 236
≈ 6.87 × 1010 configurations.) Although 4 × 4 lattices are

rather small, they are very useful in identifying the nature of spatial patterns that exist in global standoffs. In order to avoid
edge effects, we considered lattices with periodic boundary conditions (i.e., tori).

Additionally, we also considered two special cases of 6 × 6 lattices (again with periodic boundary conditions): (1) those
in which all possible 4 × 4 lattices are surrounded by single layer of defectors, and (2) those in which all possible 4 × 4
lattices are surrounded by a single layer of cooperators. These additional (larger) lattices allow for the identification of the
types of standoffs that appeared to be typical in preliminary stochastic simulation models (and in other studies, such as
Perc’s investigation into the effect of ‘cumulative advantage’ in the Public Goods game [35]); i.e., those where ‘islands’ of
cooperators (or defectors) are surrounded by a ‘sea’ of defectors (or cooperators).

Thus, for all the 4 × 4 lattices and the two subsets of 6 × 6 lattices, we screened for global standoff conditions for each
unique, bolded, andnon-grey-shaded value ofu andv in Fig. 3 (Prisoner’s Dilemma) and Fig. 4 (Snowdrift game), respectively.
Out of this total of 65,536 × 3 × 41 = 8,060,928 lattices, only 1709 were global standoffs (122 in the Prisoner’s Dilemma
and 1587 in the Snowdrift game).

Appendix A (supplementary data) shows these 1709 global standoffs for the small lattices examined. These results
emphasise an interesting facet of global standoffs: namely, two qualitatively different types of global standoffs are possible.
The first type is the ‘periodic’ global standoff, in which a small-scale spatial pattern is repeated ad infinitum (or at least
until it can loop back on itself due to periodic boundary conditions). The second type is the ‘aperiodic’ global standoff, in
which small-scale spatial patterns need not be repeated. Note that in our subsets of 6 × 6 lattices, the sea of cooperators or
defectorsmeans that it is only possible to detect aperiodic global standoffs, but the 4×4 lattices can detect both periodic and
aperiodic spatial patterns (although the aperiodic patterns must still be surrounded by a sea). Importantly, while periodic
global standoffs are stable by definition, they are unlikely to emerge spontaneously from a series of strategy replacements
– especially in large lattices – because they require the coordination of cells’ strategy types over long distances. On the
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other hand, aperiodic global standoffs do not require long-distance strategy coordination; rather, they only require the
coordination of cells within a small local cluster.

Thus, we predicted that those local-standoff parameter values (Eqs. (1) and (2)) that lead only to periodic global standoffs
(or no global standoffs at all) for certain configurations of 4 × 4 and 6 × 6 lattices should not lead to the spontaneous
emergence of global standoffs inmuch larger lattices representing large populations of stochastically interacting cooperators
and defectors. (Note that this prediction relies on the intuitive but unverified assumption that such parameter values do not
admit aperiodic global standoffs whose spatial patterns are too large to fit within the confines of the 4×4 or 6×6 latticeswe
examined.) We further predicted that parameter values that can admit aperiodic global standoffs for certain configurations
of our small lattices have the potential to lead to the spontaneous emergence of global standoffs in large mixed-strategy
populations.

We tested these predictions using stochastic simulation models. The models described here are essentially those of
Doebeli and Hauert [26], albeit for particular parameter values (shown as bold, un-shaded values of u and v in Figs. 3 and
4, respectively). Space was represented by a 100 × 100 cell lattice with periodic boundaries (i.e., a torus). At the start of
each model run, cells were assigned randomly and independently to be either cooperators or defectors. The probability of
initially being a cooperatorwas set to 0.1, 0.5, or 0.9. During each time step, a focal cell,X , was selected randomly for potential
replacement by a clone of another cell, Y , selected randomly from X ’s k neighbours. The total payoffs to the members of this
focal dyad, after playing the Prisoner’s Dilemma or the Snowdrift game with each of their respective k neighbours, were
designated PX and PY . If PX ≥ PY there was no replacement. However, if PY > PX , then Y ’s strategy was adopted by X with
a probability of (PY − PX )/(k(1 + r)), where r = u for the Prisoner’s Dilemma and r = v for the Snowdrift game (the
denominator scales the probability between 0 and 1 in this birth–death process). There was no mutation, which naturally
would tend to break up standoffs if sufficiently frequent.

A model generation was defined as 104 time steps, such that every individual was a focal individual and a potentially
replacing neighbour once each per generation, on average. For each parameter value and each starting cooperator-frequency,
10 replicates of themodels were run until (1) a global standoff was reached, (2) either cooperators or defectors went extinct
(which are actually trivial sorts of global standoff, but which will not be considered global standoffs for our purposes here),
or (3) 105 generations had elapsed, whichever came first.

6. Results

In the main text, detailed results are given for the Prisoner’s Dilemma only. A summary of the major results for the
Snowdrift game is given in the main text, with detailed results available in Appendix B (supplementary data).

6.1. Global standoffs in the spatial Prisoner’s Dilemma

6.1.1. Prisoner’s Dilemma on k = 3 lattices
In k = 3 lattices, there is only one valid value of u that produces local standoff conditions: u = 1/3 (Fig. 3(a)). In this

case, the only possible local standoff between cooperators and defectors occurs in C2D1 dyads. Therefore, in order for a global
standoff to occur, every cooperator–defector dyad in the latticemust be of the form C2D1. (Recall that cooperator–cooperator
and defector–defector dyads are immaterial in the analysis of standoff conditions.) The small-lattice analysis identified three
general spatial patterns that lead to global standoff conditions: (1) Parallel stripes or zigzags of cooperators and defectors,
(2) clusters of cooperators surrounded by defectors, and (3) clusters of defectors surrounded by cooperators (Fig. 5). Type-
(1) patterns (Fig. 5(a), (b)) are periodic, and therefore unlikely to be attracting. Type-(2) and-(3) patterns (Fig. 5(c)–(f),
respectively) are aperiodic and therefore more likely to emerge spontaneously from non-standoff initial conditions. Note
that type-(2) and-(3) patterns can lead to rings of defectors and cooperators (e.g., Fig. 5(e)), when observed from the
perspective of the non-clustering strategy.

In the simulation models for u = 1/3, when the initial proportion of cooperators was 0.1, the cooperators went extinct
within 18–42 model generations across the 10 replicates (Fig. 6(a)). Conversely, for the 20 replicates for which the initial
proportion of cooperators was 0.5 or 0.9, a global standoff was reached within 66–120 and 107–157 model generations,
respectively. When the initial proportion of cooperators was 0.5, sparse overlapping-hexagon islands of cooperators
remained in a sea of defectors (i.e., aperiodic global standoffs; Fig. 6(b)). When the initial proportion of cooperators was
0.9, complex aperiodic patterns emerged (Fig. 6(c)). In accordance with our predictions, periodic global standoffs were not
observed.

Ancillary simulations involvingmuch larger lattices suggest that the variance in outcome amongmodel runs startedwith
varying initial proportions of cooperators may be due to finite size effects: In 10 replicates of 1000 × 1000 lattices with an
initial proportion of cooperators of 0.1, half resulted in overlapping-hexagon standoffs, while the rest resulted in cooperator
extinction (not shown).
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a

b

c

d

e

f

Fig. 5. Examples of global standoffs in the Prisoner’s Dilemma when k = 3 and u = 1/3 (with periodic boundary conditions). Black cells are cooperators
and white cells are defectors. Note that every cooperator that shares a border with a defector (black cells with numbers) has exactly two neighbouring
cooperators and that every defector that shares a borderwith a cooperator (white cellswith numbers) has exactly oneneighbouring cooperator, as predicted
in Fig. 3(a). (Cooperators that do not share a border with a defector have exactly three neighbouring cooperators and defectors that do not share a border
with a cooperator have exactly zero neighbouring cooperators; however, these are not involved in any lattice-configuration changes.) (a), (b) Examples of
periodic patterns (zigzags or stripes). (c)–(f) Examples of aperiodic patterns, where clusters of cooperators or defectors are surrounded by rings of defectors
or cooperators, respectively. For all the possible global standoffs that occur in 4 × 4 or the examined subsets of 6 × 6 lattices, see Appendix A.

a b c

Fig. 6. Examples of outcomes of stochastic simulation models for the Prisoner’s Dilemma when k = 3, u = 1/3, and the initial proportion of cooperators
was (a) 0.1, (b) 0.5, or (c) 0.9. There are a total of 10,000 cells (100 × 100); black cells are cooperators and white cells are defectors. (b) and (c) are global
standoffs between cooperators and defectors; (a) is a trivial standoff in which cooperators have gone extinct.

6.1.2. Prisoner’s Dilemma on k = 4 lattices
In k = 4 lattices, there are two values of u that produce local standoff conditions: u = 1/4 and u = 1/2 (Fig. 3(b)). In

the case of u = 1/4, there are two possible cooperator–defector dyads that can result in local standoffs: C2D1 and C3D2.
Therefore, in order for a global standoff to occur, every cooperator–defector dyad in the lattice must either be of the form
C2D1 or C3D2. The small-lattice analysis demonstrated two main ways that this can occur: (1) single cell-width stripes of
cooperators or defectors (Fig. 7(a), (d)), or (2) 2×2 squares of cooperators surrounded by defectors, or defectors surrounded
by cooperators (Fig. 7(b), (c)). The former case is periodic, and therefore unlikely to be attracting; however, the latter case
is aperiodic and therefore has the potential to lead to the spontaneous emergence of global standoffs in mixed-strategy
populations that start with non-standoff conditions.
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a b c

d

Fig. 7. Examples of global standoffs in the Prisoner’s Dilemma when k = 4 and u = 1/4 (with periodic boundary conditions). Black cells are cooperators
andwhite cells are defectors. Note that every cooperator–defector dyad is either of the form (a), (b) C2D1 or (c), (d) C3D2 , as predicted in Fig. 3(b). (a) and (d)
are examples of periodic patterns (stripes), whereas (b) and (c) are examples of aperiodic patterns (2 × 2 squares of cooperators surrounded by defectors
of defectors surrounded by cooperators). For all the possible global standoffs that occur in 4× 4 or the examined subsets of 6× 6 lattices, see Appendix A.

a b c

Fig. 8. Examples of outcomes of stochastic simulation models for the Prisoner’s Dilemma when k = 4, u = 1/4, and the initial proportion of cooperators
was (a) 0.1, (b) 0.5, or (c) 0.9. There are a total of 10,000 cells (100 × 100); black cells are cooperators and white cells are defectors. All three panels depict
global standoffs between cooperators and defectors (black squares are 2 × 2 cooperator clusters). Note that the outcome in panel (a) was one possible
outcome; starting with a proportion of cooperators of 0.1 cooperator extinction also occurred frequently.

All thirty of the stochastic simulations for u = 1/4 reached a global standoff (or cooperator extinction) within 21–44,
179–321, and 446–681 model generations for initial proportions of cooperators of 0.1, 0.5, and 0.9, respectively. When the
initial proportion of cooperators was 0.1, the cooperators sometimes went extinct (six of 10 replicates), but in other cases
held out in a very small number of 2 × 2 islands in a sea of defectors (i.e., global standoffs; Fig. 8(a)). When the initial
proportion of cooperators was 0.5 or 0.9, the cooperators persisted 10 out of 10 times each, but again as 2 × 2 islands
(Fig. 8(b), (c)). As predicted, periodic global standoffs were not observed in the stochastic simulation models.

In a similar manner to what we noted in k = 3 lattices, the frequent extinction of cooperators that we observed in
100 × 100 lattices with k = 4, u = 1/4, and a starting proportion of cooperators of 0.1, was much rarer in 1000 × 1000
latticeswith equivalent starting conditions; indeed, in 10 replicates of these larger lattices, all 10 resulted in 2×2 cooperator-
island standoffs, rather than cooperator extinction (not shown).
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Fig. 9. An example global standoff in the Prisoner’s Dilemma when k = 4 and u = 1/2 (with periodic boundary conditions). Black cells are cooperators
and white cells are defectors. Note that every cooperator–defector dyad is of the form C3D1 , as predicted in Fig. 3(b). The only global standoff patterns that
can exist under these conditions are periodic ones; specifically those of alternating parallel stripes of cooperators and defectors of a thickness of at least
two cells. For all the possible global standoffs that occur in 4 × 4 or the examined subsets of 6 × 6 lattices, see Appendix A.

Fig. 10. An example global standoff in the Prisoner’s Dilemma when k = 6 and u = 1/3 (with periodic boundary conditions). Black cells are cooperators
and white cells are defectors. Note that every cooperator–defector dyad is of the form C4D2 , one of the configurations predicted in Fig. 3(b). The only global
standoff patterns that can exist under these conditions are periodic ones; specifically those of alternating parallel stripes of cooperators and defectors of a
thickness of at least two cells. For all the possible global standoffs that occur in 4 × 4 or the examined subsets of 6 × 6 lattices, see Appendix A.

In the case of u = 1/2, there is only one cooperator–defector dyad that results in a local standoff: C3D1 (Fig. 3(b)). The only
way this can occur is through perfectly straight cooperator–defector borders; specifically, lattices composed of alternating
parallel stripes of cooperators and defectors of a thickness of at least two cells (Fig. 9). This is a periodic pattern and therefore
unlikely to be attracting.

In accordancewith this, in all thirty of the stochastic simulations for u = 1/2, the cooperatorswent extinct within 18–24,
30–49, and 70–94 model generations for initial proportions of cooperators of 0.1, 0.5, and 0.9, respectively (the resulting
all-defector lattices are not shown).

6.1.3. Prisoner’s Dilemma on k = 6 lattices
In k = 6 lattices, there are two values of u that produce local standoff conditions: u = 1/6 and u = 1/3 (Fig. 3(c)). When

u = 1/6, there are four possible cooperator–defector dyads that can result in local standoffs: C2D1, C3D2, C4D3, and C5D4
(Fig. 3(c)). Therefore, in order for a global standoff to occur, every cooperator–defector dyad in the lattice must be in one of
those four forms. No possible standoffs occurred in the exhaustive search of 4 × 4 lattices or the subsets of 6 × 6 lattices.
(However, see Section 7 for two periodic global standoffs found in an ad hoc manner for 8 × 8 lattices.)

As predicted by the small-lattice search, no global standoffs emerged spontaneously in stochastic simulations. In all thirty
of the stochastic simulations for u = 1/6, the cooperators went extinct within 26–59, 2261–7454, and 4517–7416 model
generations for initial proportions of cooperators of 0.1, 0.5, and 0.9, respectively (the resulting all-defector lattices are not
shown).

When u = 1/3, there are three possible cooperator–defector dyads that can result in local standoffs: C3D1, C4D2, and
C5D3 (Fig. 3(c)). In the exhaustive search of small lattices, the only way this was found to occur is through perfectly straight
cooperator–defector borders of type C4D2; specifically, lattices composed of alternating parallel stripes of cooperators and
defectors of a thickness of at least two cells (Fig. 10). This is a periodic pattern and therefore unlikely to be attracting.

Once again as predicted, no global standoffs were observed for u = 1/3. In all thirty of the stochastic simulations for
u = 1/3, the cooperators went extinct within 18–26, 41–64, and 135–189 model generations for initial proportions of
cooperators of 0.1, 0.5, and 0.9, respectively (the resulting all-defector lattices are not shown).
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6.1.4. Summary of global standoffs in the spatial Prisoner’s Dilemma
In accordance with our prediction, global standoffs emerged in the simulations only when aperiodic patterns were found

to be possible in the analysis of small lattices. Specifically, this occurred in k = 3 lattices when u = 1/3, in k = 4
lattices when u = 1/4, and not at all in k = 6 lattices (see Appendix A for details). In most cases, the spatial patterns that
accompanied global standoffs in the Prisoner’s Dilemmawere composed of small, isolated cooperator clusters (e.g., Fig. 6(b),
8); However, in k = 3 latticeswith u = 1/3, lattices initialisedwithmostly cooperators produced highly convoluted standoff
mixtures of cooperators and defectors (e.g., Fig. 6(c)).

A summary of the Prisoner’s Dilemma results is given in Fig. 11, including potential standoff conditions, compared with
the non-standoff conditions across the entire range of possible values of u (in increments of 0.01). This comparison yields a
number of interesting observations:

(1) When k = 3 andu = 1/3 (Fig. 11(a)), non-trivial standoffswere observed exceptwhen the starting cooperator frequency
was low (0.1), in which case trivial standoffs were observed (i.e., cooperator extinction). Non-trivial standoffs allowed
cooperators to persist at a much greater frequency than at near-by values of u (e.g., u = 0.33 and 0.34; Fig. 11(a), line).
In addition, the standoff value of u = 1/3 is also the maximum value of u for which cooperators can persist at all; above
this value, defectors dominate (Fig. 11(a)).

(2) A similar link between a potential standoff value of u and the critical value of u for cooperator persistence is noted for
lattices with k = 6, u = 1/6 (Fig. 11(c)). These links are unsurprising, given that standoff values of u are also the exact
(and only) values of uwhere competitive reversals occur (e.g., for k = 6, the payoffs of the different spatial configurations
are ranked D6 > C6 > D5 > C5 > D4 > C4 > D3 > C3 > D2 > C2 > D1 > C1 > D0 > C0 for 0 < u < 1/6,D6 > C6 =

D5 > C5 = D4 > C4 = D3 > C3 = D2 > C2 = D1 > C1 = D0 > C0 for u = 1/6, and D6 > D5 > C6 > D4 > C5 > D3 >
C4 > D2 > C3 > D1 > C2 > D0 > C1 > C0 for 1/6 < u < 1/3; also see the discussion of ‘transition points’ in Refs.
[33,37], ‘phase transitions’ in Ref. [38], ‘draws’ and ‘static patterns’ in Ref. [34], and ‘superpersistence’ in Ref. [35]).

(3) When k = 4 and u = 1/4 (Fig. 11(b)), non-trivial standoffs were observed except in six of the 10 model runs for which
initial cooperator was low (0.1), in which case cooperator extinction was observed (although, as noted above, this ap-
pears to be a finite size effect). The non-trivial standoffs occurred in a region of u-values that otherwise did not allow for
cooperator–defector coexistence; other than at u = 1/4, cooperators are dominated by defectors at values of u above
approximately 0.07 (Fig. 11(b)).

6.2. Global standoffs in the spatial Snowdrift game

As with the Prisoner’s Dilemma, in the Snowdrift game, and once again in accordance with our prediction, non-trivial
global standoffs emerged in the simulations only for those cost–benefit ratios for which aperiodic standoff patterns were
possible in the analysis of small lattices (e.g., Fig. B.14). However, the reverse was often not true: In a number of cases,
even though aperiodic standoff patterns were possible, global standoffs did not emerge spontaneously from non-standoff
conditions. The reason for this is that for many critical cost–benefit ratios, the long-term frequency of cooperators in the
lattice remains either too high or too low for a particular global standoff to be possible. For example, for k = 3 lattices with
v = 1/2, aperiodic global standoffs whose C–D dyads are of the form C0D1 are possible (Fig. 4(a)). This can occur via the
very simple spatial pattern where single cooperator islands are isolated in a sea of defectors (Appendix A). Nevertheless,
in the majority of cases, standoffs did not occur under these conditions in the simulation models (Fig. B.5(a)–(c)). In this
case, the long-term frequency of cooperators is typically too high to allow such an isolated-cooperator pattern to occur.
This assertion is supported by the exception to the trend of no global standoffs in k = 3 lattices with v = 1/2, which only
occurred when the starting proportion of cooperators was sufficiently low (0.1) to allow them to be isolated, and even then
only occasionally (Fig. B.5(d)).

Appendix B provides details of the Snowdrift game results.

7. Caveats

There are at least four caveats to consider:
First, if the values of u or v do not exactly balance the payoffs of cooperators and defectors, or if these values fluctuate

over time, then the spatial configuration of a population will be unstable. However, if competitive replacement (or strategy-
updating due to social learning) is positively related to the difference in the payoffs betweenmembers of a dyad, then values
of u or v close to the balance point would cause a population’s spatial configuration to change very slowly (i.e., a ‘pseudo-
standoff’). For instance, such patterns are seen in Ref. [33].

Secondly, if the topology of interactions is not described by a lattice, but rather by a regular or regular-random network,
small-world network, or some other social network of average degree k [6,29], then it will be difficult to predict whether
standoff conditions are likely, without considering each pair of connected nodes separately. However, this does not imply
that standoff conditions cannot exist in such networks—indeed, they can; it merely means that the methods described here
would need to be extended in order to analyze them.

Thirdly, (1) if individuals are motile, rather than sedentary, (2) if they experience occasional strategy mutations, or (3) if
they sometimes undergo ‘irrational’ strategy change even when PX ≥ PY , then standoff conditions are likely to be broken
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a b c

Fig. 11. Symbols give the proportion of cooperators at the ends of model runs for possible standoff values of the cost–benefit ratio, u for the Prisoner’s
Dilemma when (a) k = 3 (u = 1/3), (b) k = 4 (u = 1/4, 1/2), or (c) k = 6 (u = 1/6, 1/3); see Fig. 3, main text. Each critical value of u has a pair of
symbols associated with it: Upper symbols for each value of u show the maximum percentage of cooperators across 30 model runs (with varying starting
proportions of cooperators); lower symbols show the minimum percentage of cooperators across 30 model runs. (In some cases the upper and lower
symbols overlap.) Red symbols accompany those values of v for which a non-trivial standoff was reached (i.e., for some model runs of k = 3, u = 1/3
and k = 3, u = 1/4 only). Blue symbols accompany those values of u for which a trivial standoff was reached (i.e., cooperator extinction). For comparison
purposes, orange lines show the mean proportion of cooperators between generations 5000 and 6000 (5 replicates) for u in increments of 0.01 (starting
with cooperator frequency of 0.5). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

a b

Fig. 12. Examples of global standoffs in the Prisoner’s Dilemma when k = 6 and u = 1/6 (with periodic boundary conditions). Black cells are cooperators
and white cells are defectors. Note that every cooperator–defector dyad is either of the form (a) C4D3 or (b) C3D2 , among the possibilities predicted in
Fig. 3(c). Both are periodic patterns.

up by individuals swapping locations with one another, by individuals moving to entirely new locations, or by individuals
randomly adopting a new strategy. Thus, the analyses described here are most consistent with populations of sedentary
organisms attached to a two-dimensional substrate with rare mutation and mostly deterministic replacement. However,
depending on the relative rates of interaction,movement,mutation, and irrationality, spatial standoffs could occur inmotile,
mutation-prone, or irrational populations too—at least temporarily.

Fourthly, there may be larger-scale standoffs then the methods presented in Section 5 are able to detect (e.g., periodic
8 × 8 pattern in Fig. 12). Nevertheless, given the results in Section 6, if these larger-scale standoffs exist, and if they
are aperiodic, they are apparently very improbable lattice configurations in stochastically interacting populations that are
randomly initialised.

8. Conclusions

Spatial population structure is thought to be one of the main ways that the mean-field predictions of the Prisoner’s
Dilemma can be circumvented, allowing for cooperators to persist despite the ever-present temptation to defect [24–
26,33,37]. Additionally, spatial structure can also greatly affect the long-term proportion of cooperators and defectors in
another important game used to study the evolution of cooperation, the Snowdrift game [11,26,32]. Here, we considered
the cost–benefit ratios of cooperation that have the potential to lead to global standoffs in lattice models of the Prisoner’s
Dilemma and the Snowdrift game, and then showed that this potential is often realised by the spontaneous emergence of
global standoffs in lattices that were randomly initialised with the cooperator and defector strategies and stochastically
updated. However, in many other cases, these critical cost–benefit ratios were insufficient to ensure that a global standoff
actually arose in stochastic models; in such cases, either (1) lattice geometry precluded any global standoffs from occurring
(i.e., there is no way to tile the necessary local configurations over the entire population), (2) standoffs were not precluded
by lattice geometry, but were necessarily periodic in nature and therefore unlikely to be attracting, or (3) aperiodic
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standoffs were possible but could only occur when the frequency of cooperators was greater or less than what was actually
experienced by populations at the particular cost–benefit ratio in question. Altogether, our research contributes to thewider
goal of understanding how local interactions that occur at the neighbourhood scale canproduce a range of static anddynamic
spatial patterns at the population scale. Subsequent research should include investigations into whether, and under what
circumstances, other types of population structure (i.e., non-lattice networks) and other games (e.g., N-player games like
the Public Goods game [39]) admit the spontaneous formation of global standoffs.
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